GROUPE
RENAULT
Research
orange labs

Budgeted Reinforcement Learning in Continuous State Space
Nicolas Carrara*, Edouard Leurent*, Romain Laroche, Tanguy Urvoy, Odalric-Ambrym Maillard, Olivier Pietquin

Motivation
Markov Decision Process $\left(\mathcal{S}, \mathcal{A}, P, R_{r}, \gamma\right)$

$$
\max _{\pi}{\underset{\pi}{\pi}}_{\mathbb{E}_{G_{\pi}^{\pi}}^{\infty}}^{\underbrace{\infty}_{t=0} \gamma^{t} R_{r}\left(s_{t}, a_{t}\right)}
$$

Single scalar reward for multiple contradictory aspects

Constrained MDP $\left(\mathcal{S}, \mathcal{A}, P, R_{r}, R_{c}, \gamma, \beta\right)$

- [Beutler and Ross 1985; Altman 1999]
- Introduce a cost signal R_{c} and constrained objective
$\max _{\pi \in \mathcal{M}(\mathcal{A})^{s}} \mathbb{E}\left[G_{r}^{\pi} \mid s_{0}=s\right] \quad$ s.t. $\mathbb{E}\left[G_{c}^{\pi} \mid s_{0}=s\right] \leq \beta$
\longrightarrow The cost budget β cannot be changed after training

Budgeted MDP $\left(\mathcal{S}, \mathcal{A}, P, R_{r}, R_{c}, \gamma, \mathcal{B}\right)$

- [Boutilier and Lu 2016]
- We seek one general policy $\pi(s, \beta)$ that solves every CMDP for any $\beta \in \mathcal{B}$
\longrightarrow Can only be solved for finite \mathcal{S} and known P, R_{r}, R_{c}

Setting

Budgeted policies π

- Take a budget β as an additional input
- Output a next budget β^{\prime}

$$
\pi: \underbrace{(s, \beta)}_{\bar{s}} \rightarrow \underbrace{\left(a, \beta^{\prime}\right)}_{\bar{a}}
$$

2D signals

1. Rewards $R=\left(R_{r}, R_{c}\right)$
2. Returns $G^{\pi}=\left(G_{r}^{\pi}, G_{c}^{\pi}\right)$
3. Values $V^{\pi}=\left(V_{r}^{\pi}, V_{c}^{\pi}\right)$ and $Q^{\pi}=\left(Q_{r}^{\pi}, Q_{c}^{\pi}\right)$

Policy Evaluation

The Bellman Expectation equations are preserved, and the Bellman Expectation Operator \mathcal{T}^{π} is a γ-contraction

Budgeted Optimality

Definition. In that order, we want to:
(i) Respect the budget β :

$$
\Pi_{a}(\bar{s}) \stackrel{\text { def }}{=}\left\{\pi \in \Pi: V_{c}^{\pi}(s, \beta) \leq \beta\right\}
$$

(ii) Maximise the rewards:

$$
V_{r}^{*}(\bar{s}) \stackrel{\text { def }}{=} \max _{\pi \in \Pi_{a}(\bar{s})} V_{r}^{\pi}(\bar{s}), \quad \Pi_{r}(\bar{s}) \stackrel{\text { def }}{=} \underset{\pi \in \Pi_{a}(\bar{s})}{\arg \max } V_{r}^{\pi}(\bar{s})
$$

(iii) Minimise the costs:

$$
V_{c}^{*}(\bar{s}) \stackrel{\text { def }}{=} \min _{\pi \in \Pi_{r}(\bar{s})} V_{c}^{\pi}(\bar{s}), \quad \Pi^{*}(\bar{s}) \xlongequal{\text { def }} \underset{\pi \in \Pi_{r}(\bar{s})}{\arg \min } V_{c}^{\pi}(\bar{s})
$$

We define the budgeted action-value function Q^{*} similarly

Acknowledgements

This work has been supported by CPER Nord-Pas de Calais/FEDER DATA Advanced data science and technologies 2015-2020, the French Ministry of Higher Education and Research, INRIA, and the French Agence Nationale de la Recherche (ANR)

Budgeted Dynamic Programming

Theorem (Budgeted Bellman Optimality). Q^{*} verifies:
Algorithm 1: Bud-
geted Value Iteration
Data: P, R_{r}, R_{c}
Result: Q^{*}
$Q_{0} \leftarrow 0$
2 repeat
${ }_{3} \mid Q_{k+1} \leftarrow \mathcal{T} Q_{k}$
4 until convergence

$$
\begin{gather*}
\pi_{\text {greedy }}(\bar{a} \mid \bar{s} ; Q) \in \arg \min _{\rho \in \Pi_{r}^{Q}} \underset{a \sim \rho}{\mathbb{E}} Q_{c}(\bar{s}, \bar{a}), \\
\text { where } \quad \Pi_{r}^{Q} \xlongequal{\text { def }}= \tag{2b}\\
\arg \max _{\rho \in \mathcal{M}(\overline{\mathcal{A}})}^{\mathbb{E} \sim \rho} Q_{r}(\bar{s}, \bar{a}) \tag{2c}\\
\underset{\bar{a} \sim \rho}{\mathbb{E}} Q_{c}(\bar{s}, \bar{a}) \leq \beta
\end{gather*}
$$

Proposition. $\pi_{\text {greedy }}\left(\cdot ; Q^{*}\right)$ is simultaneously optimal in all states $\bar{s} \in \overline{\mathcal{S}}$:
$\pi_{\text {greedy }}\left(\cdot ; Q^{*}\right) \in \Pi^{*}(\bar{s})$
In particular, $V^{\pi_{\text {grecedy }}\left(; ; Q^{*}\right)}=V^{*}$ and $Q^{\pi_{\text {greadg }}\left(; ; Q^{*}\right)}=Q^{*}$

Theorem (Contractivity). For any $\operatorname{BMDP}\left(\mathcal{S}, \mathcal{A}, P, R_{r}, R_{c}, \gamma\right)$ with $|\mathcal{A}| \geq 2, \mathcal{T}$ is not a contraction.

$$
\forall \varepsilon>0, \exists Q^{1}, Q^{2} \in\left(\mathbb{R}^{2}\right)^{\overline{\mathcal{S A}}}:\left\|\mathcal{T} Q^{1}-\mathcal{T} Q^{2}\right\|_{\infty} \geq \frac{1}{\varepsilon}\left\|Q^{1}-Q^{2}\right\|_{\infty}
$$

X We cannot guarantee the convergence of $\mathcal{T}^{n}\left(Q_{0}\right)$ to Q^{*}

Theorem (Contractivity on smooth Q-functions). \mathcal{T} is a contraction when restricted to the subset \mathcal{L}_{γ} of Q-functions such that
" Q_{r} is L-Lipschitz with respect to Q_{c} ", with $L<\frac{1}{\gamma}-1$.
\checkmark We guarantee convergence under some (strong) assumptions
\checkmark We observe empirical convergence.

Budgeted Reinforcement Learning

We address several limitations of Algorithm 1.

1. The BMDP is unknown
\longrightarrow Work with a batch of samples $\mathcal{D}=\left\{\left(\bar{s}_{i}, \bar{a}_{i}, r_{i}, \bar{s}_{i}^{\prime}\right\}_{i \in[0, N]}\right.$
Algorithm 2: Budgeted Fitted-Q
2. \mathcal{T} contains an expectation $\mathbb{E}_{\bar{s}^{\prime} \sim \bar{P}}$ over next states \bar{s}^{\prime}

Iteration

\longrightarrow Replace it with a sampling operator $\hat{\mathcal{T}}$:
Data: \mathcal{D}
Result: Q^{*}

$$
\hat{\mathcal{T}} Q\left(\bar{s}_{i}, \bar{a}_{i}, r_{i}, \bar{s}_{i}^{\prime}\right) \stackrel{\text { def }}{=} r_{i}+\gamma \sum_{\overline{a_{i}^{\prime}} \in \mathcal{A}_{i}} \pi_{\text {greedy }}\left(\overline{a_{i}^{\prime}} \mid \overline{s_{i}^{\prime}} ; Q\right) Q\left(\overline{s_{i}^{\prime}}, \overline{a_{i}^{\prime}}\right) .
$$

renoat

$$
2 \text { repeat }
$$

3. \mathcal{S} is continuous
\longrightarrow Employ function approximation Q_{θ}, and minimise a regression loss

$$
\mathcal{L}\left(Q_{\theta}, Q_{\mathrm{target}} ; \mathcal{D}\right)=\sum_{\mathcal{D}}\left\|Q_{\theta}(\bar{s}, \bar{a})-Q_{\mathrm{target}}\left(\bar{s}, \bar{a}, r, \bar{s}^{\prime}\right)\right\|_{2}^{2}
$$

$3 \mid \quad \theta_{k+1} \leftarrow \arg \min _{\theta} \mathcal{L}\left(Q_{\theta}, \hat{\mathcal{T}} Q_{\theta_{k}} ; \mathcal{D}\right)$
4 until convergence
4. How to collect the batch \mathcal{D} ? \longrightarrow We propose a risk-sensitive explo ration procedure

Scalable Implementation

How to compute the greedy policy?

Proposition (Hull policy). $\pi_{\text {greedy }}$ in (2) can be computed explicitly, as a mixture of two points that lie on the convex hull of Q.

Function approximation

Parallel computing

Experience collection and computation of $\pi_{\text {greedy }}$ can be distributed over several cores.

Experiments

Risk-sensitive exploration

