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Motivation
Markov Decision Process (S,A, P,Rr, γ):

max
π

E
π

∞∑
t=0

γtRr(st, at)︸ ︷︷ ︸
Gπr

Single scalar reward for multiple contradictory aspects

Task Completion 𝐺𝑟

Risk 𝐺𝑐

Pareto-optimal front Π∗

argmax
𝜋

∑𝛾𝑡𝑅𝑡(𝑅𝑟 , −𝑅𝑐)

𝜋∗

Constrained MDP (S,A, P,Rr,Rc , γ,β )

• [Beutler and Ross 1985; Altman 1999]

• Introduce a cost signal Rc and constrained objective

max
π∈M(A)S

E[Gπr |s0 = s] s.t. E[Gπc |s0 = s] ≤ β

The cost budget β cannot be changed after training

Budgeted MDP (S,A, P,Rr, Rc, γ,B)

• [Boutilier and Lu 2016]

• We seek one general policy π(s, β) that solves every CMDP
for any β ∈ B

Can only be solved for finite S and known P,Rr, Rc.

Setting
Budgeted policies π

• Take a budget β as an additional input

• Output a next budget β′

π : (s, β)︸ ︷︷ ︸
s

→ (a, β′)︸ ︷︷ ︸
a

2D signals

1. Rewards R = (Rr, Rc)

2. Returns Gπ = (Gπr , Gπc )

3. Values V π = (V πr , V πc ) and Qπ = (Qπr , Qπc )

Policy Evaluation

The Bellman Expectation equations are preserved, and the Bellman
Expectation Operator T π is a γ-contraction.

Budgeted Optimality
Definition. In that order, we want to:

(i) Respect the budget β :

Πa(s) def={π ∈ Π : V πc (s, β) ≤ β}

(ii) Maximise the rewards:

V ∗r (s) def=maxπ∈Πa(s)V
π
r (s), Πr(s)

def= arg max
π∈Πa(s)

V πr (s)

(iii) Minimise the costs:

V ∗c (s) def=minπ∈Πr(s)V
π
c (s), Π∗(s) def= arg min

π∈Πr(s)
V πc (s)

We define the budgeted action-value function Q∗ similarly

Budgeted Dynamic Programming

Theorem (Budgeted Bellman Optimality). Q∗ verifies:

Q∗(s, a) = T Q∗(s, a) def=R(s, a) + γ
∑
s′∈S

P (s′|s, a)
∑
a′∈A

πgreedy(a′|s′;Q∗)Q∗(s′, a′), (1)

where the greedy policy πgreedy is defined by:

πgreedy(a|s;Q) ∈arg minρ∈ΠQr E
a∼ρ

Qc(s, a), (2a)

where ΠQ
r

def=arg maxρ∈M(A) E
a∼ρ

Qr(s, a) (2b)

s.t. E
a∼ρ

Qc(s, a)≤ β (2c)

Proposition. πgreedy(· ;Q∗) is simultaneously optimal in all states s ∈ S:

πgreedy(· ;Q∗) ∈ Π∗(s)

In particular, V πgreedy(·;Q∗) = V ∗ and Qπgreedy(·;Q∗) = Q∗.

Algorithm 1: Bud-
geted Value Iteration
Data: P,Rr, Rc
Result: Q∗

1 Q0 ← 0
2 repeat
3 Qk+1 ← T Qk
4 until convergence
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Theorem (Contractivity). For any BMDP (S,A, P,Rr, Rc, γ) with |A| ≥ 2, T is not a contraction.

∀ε > 0,∃Q1, Q2 ∈ (R2)SA : ‖T Q1 − T Q2‖∞ ≥
1
ε
‖Q1 −Q2‖∞

7 We cannot guarantee the convergence of T n(Q0) to Q∗.

Theorem (Contractivity on smooth Q-functions). T is a contraction when restricted to the subset Lγ of Q-functions such that
"Qr is L-Lipschitz with respect to Qc", with L < 1

γ − 1.

X We guarantee convergence under some (strong) assumptions.
X We observe empirical convergence.

Budgeted Reinforcement Learning
We address several limitations of Algorithm 1.

1. The BMDP is unknown
Work with a batch of samples D = {(si, ai, ri, s′i}i∈[0,N ]

2. T contains an expectation Es′∼P over next states s′

Replace it with a sampling operator T̂ :

T̂ Q(si, ai, ri, s′i)
def= ri + γ

∑
a′
i
∈Ai

πgreedy(a′i|s′i;Q)Q(s′i, a′i).

3. S is continuous
Employ function approximation Qθ, and minimise a regression loss

L(Qθ, Qtarget;D) =
∑
D
||Qθ(s, a)−Qtarget(s, a, r, s′)||22

Algorithm 2: Budgeted Fitted-Q
Iteration
Data: D
Result: Q∗

1 Qθ0 ← 0
2 repeat
3 θk+1 ← arg minθ L(Qθ, T̂ Qθk ;D)
4 until convergence

4. How to collect the batch D?
We propose a risk-sensitive explo-
ration procedure

Scalable Implementation
How to compute the greedy policy?
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Proposition (Hull policy). πgreedy in (2) can be
computed explicitly, as a mixture of two points that lie
on the convex hull of Q.

Function approximation
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Parallel computing
Experience collection and computation of πgreedy can be distributed
over several cores.

Experiments
Risk-sensitive exploration

BFTQ(risk-sensitive) BFTQ(risk-neutral)
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