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Once upon a time

Classic Autonomous Driving Pipeline

(Bold?) Claim
If we remove the humans on the road, the problem becomes easy.
X Even with obstacles, partial observability, disturbances, etc.
X The problems of Route Planning, Motion Planning, Local

Feedback Control are basically solved.
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Scope of this thesis

7 We focus instead on the (arguably) harder challenge:
Behavioural Planning

What we have
• In practice, often a hand-crafted rule-based system (FSM).
• Won’t scale to complex scenes

What we want
• Handle human agents with uncertain behaviours
• Handle the interactions between agents

We turn to learning-based approaches
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Reinforcement Learning — the framework

Markov Decision Processes
1. Observe state s ∈ S;

2. Pick action a ∈ A according to our policy π(a|s) ;
3. Transition to a next state s ′ ∼ P

(
s ′|s, a

)
;

4. Receive a reward r .

Objective: maximise V = E [
∑∞

t=0 γ
trt ]

• States: Ground truth for vehicles, roads, signals, etc.
Continuous

• Actions: Semantic decisions: change lane, yield, pass, etc.
Discrete
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Reinforcement Learning — how?

Model-free
1. Directly optimise π(a|s) through policy evaluation and policy

improvement

Model-based
1. Learn a model for the dynamics T̂ (st+1|st , at),
2. (Planning) Leverage it to compute

max
π

E

[ ∞∑
t=0

γtr(st , at)

∣∣∣∣∣ at ∼ π(st), st+1 ∼ T̂ (st , at)

]

+ Better sample efficiency, interpretability, priors.
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Outline

Model-Free

Model-Based

Efficient Safe
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Q-learning

Definition (Optimal State-action Value Function Q∗)

Q∗(s, a) = max
π

Eπ

[ ∞∑
t=0

γtR(st , at)

∣∣∣∣∣ s0 = s, a0 = a
]

How to learn Q∗ ?

Proposition (Bellman Optimality Equation)

Q∗(s, a) = R(s, a) + γ E
s′

max
a′

Q∗(s ′, a′)

Represent Q∗ with function approximation
(e.g. a neural network in DQN)
Apply fixed-point iteration over samples (s, a, s ′) until
convergence
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How to represent the state?

The list of features representation

A joint state s of N + 1 observed
vehicles

s = (si )i∈[0,N]

si =
[
xi yi vx

i vy
i cosψi sinψi

]T
-7.0 -5.0 -3.0 -1.0 1.0 3.0 5.0

-11.0

-9.0

-7.0

-5.0

-3.0

-1.0

1.0

3.0

5.0

7.0

9.0
x1, y1

x2, y2

x3, y3
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Limitations

Issues related to function approximation
1. Variable size

usual models accept fixed-size inputs
2. Sensitivity to the ordering

we want the policy to be permutation-invariant:

∀τ ∈ SN , π(·|(s0, s1, . . . , sN)) = π(·|(s0, sτ(1), . . . , sτ(N)))
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A common solution

Occupancy grid representation

-7.0 -5.0 -3.0 -1.0 1.0 3.0 5.0
-11.0
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-7.0

-5.0

-3.0

-1.0

1.0

3.0

5.0

7.0

9.0

X Fixed-size
X Does not depend on an ordering
7 Suffers from an accuracy / size tradeoff
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Proposed architecture
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Ego-attention block
X Inputs can have a variable size
X Based on a dot product

permutation-invariant
X Compact size with no accuracy loss
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Experiments

The highway-env environment

Agent FCN/List CNN/Grid Ego-Attention

Input sizes [15, 7] [32, 32, 7] [ · , 7]
Layers sizes [128, 128] Convolutional layers: 3

Kernel Size: 2
Stride: 2

Head: [20]

Encoder: [64, 64]
Attention: 2 heads

dk = 32
Decoder: [64, 64]

Number of parameters 3.0e4 3.2e4 3.4e4
Variable input size No No Yes
Permutation invariant No Yes Yes
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Performances
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Attention Visualization

Head specialisation

Distance
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https://eleurent.github.io/social-attention/#attention-and-distance-to-vehicles


Attention Visualization

Sensitivity to uncertainty

A full episode
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https://eleurent.github.io/social-attention/#full-episode
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Limitation of Reinforcement Learning

Reinforcement learning relies on a single reward function R

X A convenient formulation, but;
7 R is not always easy to design.

Conflicting Objectives
Complex tasks require multiple contradictory aspects. Typically:

Task completion vs Safety

For example...
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Example problems with conflicts

Two-Way Road
The agent is driving on a two-way road with a car in front of it,
• it can stay behind (safe/slow);
• it can overtake (unsafe/fast).
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https://budgeted-rl.github.io/assets/highway-neutral.gif


Limitation of Reinforcement Learning

Reinforcement learning relies on a single reward function R
X A convenient formulation, but;
7 R is not always easy to design.

Conflicting Objectives
Complex tasks require multiple contradictory aspects. Typically:

Task completion vs Safety

For example...

For a fixed reward function R,
π∗ is only guaranteed to lie on a Pareto front Π∗

no control over the Task Completion
Safety trade-off
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The Pareto front

Task Completion 𝐺1 = ∑𝛾𝑡𝑅1
𝑡

Safety 𝐺2 = ∑𝛾𝑡𝑅2
𝑡

Pareto-optimal curve Π∗

argmax
𝜋

∑𝛾𝑡𝑅𝑡(𝑅1, 𝑅2)
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From maximal safety to minimal risk

Task Completion 𝐺𝑟

Risk 𝐺𝑐

Pareto-optimal curve Π∗

argmax
𝜋

∑𝛾𝑡𝑅𝑡(𝑅𝑟 , −𝑅𝑐)
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The optimal policy can move freely along Π∗

Task Completion 𝐺𝑟

Risk 𝐺𝑐

Pareto-optimal curve Π∗

argmax
𝜋

∑𝛾𝑡𝑅𝑡(𝑅𝑟 , −𝑅𝑐)

𝜋∗
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How to choose a desired trade-off

Task Completion 𝐺𝑟

Risk 𝐺𝑐

Pareto-optimal curve Π∗

argmax
𝜋

∑𝛾𝑡𝑅𝑟
𝑡

𝑠. 𝑡. ∑𝛾𝑡𝑅𝑐
𝑡 < 𝛽

𝜋∗

𝛽
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Constrained Reinforcement Learning

Markov Decision Process
An MDP is a tuple (S,A,P,Rr , γ) with:

• Rewards Rr ∈ RS×A

• Costs Rc ∈ RS×A

• Budget β

Objective
Maximise rewards

maxπ∈M(A)S E [
∑∞

t=0 γ
tRr (st , at) | s0 = s]

s.t. E [
∑∞

t=0 γ
tRc(st , at) | s0 = s] ≤ β
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Constrained Reinforcement Learning

Constrained Markov Decision Process
A CMDP is a tuple (S,A,P,Rr ,Rc , γ, β) with:

• Rewards Rr ∈ RS×A • Costs Rc ∈ RS×A

• Budget β

Objective
Maximise rewards while keeping costs under a fixed budget

maxπ∈M(A)S E [
∑∞

t=0 γ
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s.t. E [
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We want to learn Π∗ rather than π∗
β

Task Completion 𝐺𝑟

Risk 𝐺𝑐

Pareto-optimal curve Π∗

argmax
𝜋

∑𝛾𝑡𝑅𝑟
𝑡

𝑠. 𝑡. ∑𝛾𝑡𝑅𝑐
𝑡 < 𝛽

𝜋∗

𝛽
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Budgeted Reinforcement Learning

Budgeted Markov Decision Process
A BMDP is a tuple (S,A,P,Rr ,Rc , γ,B) with:

• Rewards Rr ∈ RS×A • Costs Rc ∈ RS×A

• Budget space B

Objective
Maximise rewards while keeping costs under an adjustable budget.
∀β ∈ B,

maxπ∈M(A×B)S×B E [
∑∞

t=0 γ
tRr (st , at) | s0 = s, β0 = β]

s.t. E [
∑∞

t=0 γ
tRc(st , at) | s0 = s, β0 = β] ≤ β
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Problem formulation

Budgeted policies π
• Take a budget β as an additional input
• Output a next budget β′

• π : (s, β)︸ ︷︷ ︸
s

→ (a, β′)︸ ︷︷ ︸
a

Augment the spaces with the budget β
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Augmented Setting

Definition (Augmented spaces)
• States S = S × B.
• Actions A = A× B.
• Dynamics P

state (s, β), action (a, βa)→ next state
{

s ′ ∼ P(s ′|s, a)

β′ = βa

Definition (Augmented signals)
1. Rewards R = (Rr ,Rc)

2. Returns Gπ = (Gπ
r ,Gπ

c )
def
=
∑∞

t=0 γ
tR(st , at)

3. Value V π(s) = (V π
r ,V π

c )
def
= E [Gπ | s0 = s]

4. Q-Value Qπ(s, a) = (Qπ
r ,Qπ

c )
def
= E [Gπ | s0 = s, a0 = a]
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Budgeted Optimality

Definition (Budgeted Optimality)
In that order, we want to:

(i) Respect the budget β:

Πa(s)
def
= {π ∈ Π : V π

c (s, β)≤ β}

(ii) Maximise the rewards:

V ∗r (s)
def
= maxπ∈Πa(s)V π

r (s) Πr (s)
def
= arg maxπ∈Πa(s)V π

r (s)

(iii) Minimise the costs:

V ∗c (s)
def
= minπ∈Πr (s)V π

c (s), Π∗(s)
def
= arg minπ∈Πr (s)V π

c (s)

We define the budgeted action-value function Q∗ similarly
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Budgeted Optimality

Theorem (Budgeted Bellman Optimality Equation)
Q∗ verifies the following equation:

Q∗(s, a) = T Q∗(s, a)

def
= R(s, a) + γ

∑
s′∈S

P(s ′|s, a)
∑
a′∈A

πgreedy(a′|s ′; Q∗)Q∗(s ′, a′)

where the greedy policy πgreedy is defined by:

πgreedy(a|s; Q) ∈arg minρ∈ΠQ
r

E
a∼ρ

Qc(s, a),

where ΠQ
r

def
=arg maxρ∈M(A) E

a∼ρ
Qr (s, a)

s.t. E
a∼ρ

Qc(s, a)≤ β

32 -Reinforcement Learning for Autonomous Driving- Edouard Leurent



The optimal policy

Proposition (Optimality of the policy)
πgreedy(· ; Q∗) is simultaneously optimal in all states s ∈ S:

πgreedy(· ; Q∗) ∈ Π∗(s)

In particular, V πgreedy(·;Q∗) = V ∗ and Qπgreedy(·;Q∗) = Q∗.

Proposition (Solving the non-linear program)
πgreedy can be computed efficiently, as a mixture πhull of two
points that lie on the convex hull of Q.

πgreedy = πhull
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Convergence analysis

Recall what we’ve shown so far:

T −−−−−−−→
fixed−point

Q∗ −−−−−→
tractable

πhull(Q∗) −−−→
equal

πgreedy(Q∗) −−−−→
optimal

We’re almost there!
All that is left is to perform Fixed-Point Iteration to compute Q∗.

Theorem (Non-Contractivity)
For any BMDP (S,A,P,Rr ,Rc , γ) with |A| ≥ 2, T is not a
contraction.

∀ε > 0,∃Q1,Q2 ∈ (R2)SA : ‖T Q1 − T Q2‖∞ ≥
1
ε
‖Q1 − Q2‖∞

7 We cannot guarantee the convergence of T n(Q0) to Q∗
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Convergence analysis

Thankfully,

Theorem (Contractivity on smooth Q-functions)
T is a contraction when restricted to the subset Lγ of Q-functions
such that ”Qr is L-Lipschitz with respect to Qc”, with L < 1

γ − 1.

Lγ =

{
Q ∈ (R2)SA s.t. ∃L < 1

γ − 1 : ∀s ∈ S, a1, a2 ∈ A,
|Qr (s, a1)− Qr (s, a2)| ≤ L|Qc(s, a1)− Qc(s, a2)|

}

X We guarantee convergence under some (strong) assumptions
X We observe empirical convergence
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Experiments

Lagrangian Relaxation Baseline
Consider the dual problem so as to replace the hard constraint by a
soft constraint penalised by a Lagrangian multiplier λ:

max
π

E
∑

t
γtRr (s, a)− λγtRc(s, a)

• Train many policies πk with penalties λk and recover the cost
budgets βk

• Very data/memory-heavy
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Experiments

Gπ

r

Gπ

c
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Principle

Model estimation
Learn a model for the dynamics T̂ (st+1|st , at). For instance:

1. Least-square estimate: minT̂
∑

t ‖st+1 − T̂ (st , at)‖2
2

2. Maximum Likelihood estimate: maxT̂
∑

t T̂ (st+1|st , at)

Planning
Leverage T̂ to compute

max
π

E

[ ∞∑
t=0

γtr(st , at)

∣∣∣∣∣ at ∼ π(st), st+1 ∼ T̂ (st , at)

]

How?
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Online Planning

We can use T̂ as a generative model:

Agent Environment

Planner
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Online Planning

We can use T̂ as a generative model:
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We can use T̂ as a generative model:

Agent Environment

Planner

state, reward

state

action

recommendation
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Planning performance

Online Planning
• fixed budget: the model can only be queried n times

Objective: minimize E V ∗ − V (n)︸ ︷︷ ︸
Simple Regret rn

An exploration-exploitation problem.
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Optimistic Planning

Optimism in the Face of Uncertainty
Given a set of options a ∈ A with uncertain outcomes, try the one
with the highest possible outcome.

• Either you performed well;
• or you learned something.

Instances
• Monte-carlo tree search (MCTS) (Coulom, 2006): CrazyStone

• Reframed in the bandit setting as UCT (Kocsis and Szepesvári,
2006), still very popular (e.g. Alpha Go).
• Proved asymptotic consistency, but no regret bound.

42 -Reinforcement Learning for Autonomous Driving- Edouard Leurent



Optimistic Planning

Optimism in the Face of Uncertainty
Given a set of options a ∈ A with uncertain outcomes, try the one
with the highest possible outcome.
• Either you performed well;

• or you learned something.

Instances
• Monte-carlo tree search (MCTS) (Coulom, 2006): CrazyStone

• Reframed in the bandit setting as UCT (Kocsis and Szepesvári,
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Analysis of UCT

It was analysed in (Coquelin and Munos, 2007)]

The sample complexity of is lower-bounded by O(exp(exp(D))) .
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Failing cases of UCT

Not just a theoretical counter-example.
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Can we get better guarantees?

OPD: Optimistic Planning for Deterministic systems
• Introduced by (Hren and Munos, 2008)
• Another optimistic algorithm
• Only for deterministic MDPs

Theorem (OPD sample complexity)

E rn = O
(

n−
log 1/γ

log κ

)
, if κ > 1

OLOP: Open-Loop Optimistic Planning
• Introduced by (Bubeck and Munos, 2010)
• Extends OPD to the stochastic setting
• Only considers open-loop policies, i.e. sequences of actions
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The idea behind OLOP

A direct application of Optimism in the Face of Uncertainty
1. We want

max
a

V (a)

2. Form upper confidence-bounds of sequence values:

V (a) ≤ Ua w.h.p

3. Sample the sequence with highest UCB:

arg max
a

Ua
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The idea behind OLOP
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The idea behind OLOP
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Under the hood

Upper-bounding the value of sequences

V (a) =

follow the sequence︷ ︸︸ ︷
h∑

t=1
γtµa1:t +

act optimally︷ ︸︸ ︷∑
t≥h+1

γtµa∗1:t
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Under the hood

Upper-bounding the value of sequences

V (a) =

follow the sequence︷ ︸︸ ︷
h∑

t=1
γt µa1:t︸︷︷︸
≤Uµ

+

act optimally︷ ︸︸ ︷∑
t≥h+1

γt µa∗1:t︸︷︷︸
≤1
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Under the hood

OLOP main tool: the Chernoff-Hoeffding deviation inequality

Uµ
a (m)︸ ︷︷ ︸

Upper bound

def
= µ̂a(m)︸ ︷︷ ︸

Empirical mean

+

√
2 log M
Ta(m)︸ ︷︷ ︸

Confidence interval

OPD: upper-bound all the future rewards by 1

Ua(m)
def
=

h∑
t=1

γtUµ
a1:t (m)︸ ︷︷ ︸

Past rewards

+
γh+1

1− γ︸ ︷︷ ︸
Future rewards

Bounds sharpening

Ba(m)
def
= inf

1≤t≤L
Ua1:t (m)
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OLOP guarantees

Theorem (OLOP Sample complexity)

OLOP satisfies:

E rn =

Õ
(

n−
log 1/γ
log κ′

)
, if γ

√
κ′ > 1

Õ
(

n− 1
2

)
, if γ

√
κ′ ≤ 1

”Remarkably, in the case κγ2 > 1, we obtain the same rate for the
simple regret as Hren and Munos (2008). Thus, in this case, we

can say that planning in stochastic environments is not harder than
planning in deterministic environments”.
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Does it work?

Our objective: understand and bridge this gap.

Make OLOP practical.
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What’s wrong with OLOP?
Explanation: inconsistency
• Unintended behaviour happens when Uµ

a (m) > 1,∀a.

Uµ
a (m) = µ̂a(m)︸ ︷︷ ︸

∈[0,1]

+

√
2 log M
Ta(m)︸ ︷︷ ︸
>0

• Then the sequence (Ua1:t (m))t is increasing

Ua1:1(m) = γUµ
a1(m) + γ21 +γ31 + . . .

Ua1:2(m) = γUµ
a1(m) + γ2 Uµ

a2︸︷︷︸
>1

+γ31 + . . .

• Then Ba(m) = Ua1:1(m)
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What’s wrong with OLOP?

What we were promised
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What’s wrong with OLOP?

What we actually get

OLOP behaves as uniform planning!

55 -Reinforcement Learning for Autonomous Driving- Edouard Leurent



Our contribution: Kullback-Leibler OLOP

We summon the upper-confidence bound from kl-UCB (Cappé
et al., 2013):

Uµ
a (m)

def
= max {q ∈ I : Ta(m)d(µ̂a(m), q) ≤ f (m)}

Algorithm OLOP KL-OLOP

Interval I R [0, 1]
Divergence d dQUAD dBER

f (m) 4 log M 2 log M + 2 log log M

dQUAD(p, q)
def
= 2(p − q)2

dBER(p, q)
def
= p log

p
q + (1− p) log

1− p
1− q
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Our contribution: Kullback-Leibler OLOP

0 Lµ
a µ̂a Uµ

a 1

1
Ta

f(m)

dber(µ̂a, q)

And now,
• Uµ

a (m) ∈ I = [0, 1],∀a .
• The sequence (Ua1:t (m))t is non-increasing
• Ba(m) = Ua(m), the bound sharpening step is superfluous.
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Sample complexity

Theorem (Sample complexity)

KL-OLOP enjoys the same regret bounds as OLOP. More precisely,
KL-OLOP satisfies:

E rn =

Õ
(

n−
log 1/γ
log κ′

)
, if γ

√
κ′ > 1

Õ
(

n− 1
2

)
, if γ

√
κ′ ≤ 1
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Experiments — Expanded Trees
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Experiments — Performances
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Experiments — Performances
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Safe Model-Based
05



The issue of model bias

Model-based RL learns the dynamics T̂ and optimizes

max
π

E

[ ∞∑
t=0

γtr(st , at)

∣∣∣∣∣ at ∼ π(st), st+1 ∼ T̂ (st , at)

]

Definition (Model Bias)

T 6= T̂

• Video example
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How to deal with model bias?

1. Build a confidence region Cδ around the true dynamics T

P (T ∈ Cδ) > 1− δ

2. Plan robustly with respect to this ambiguity

max
π

min
T∈Cδ

∞∑
t=0

γtrt︸ ︷︷ ︸
v r (π)
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Model Estimation

In order to build Cδ, we rely on a structure assumption

Assumption (Structure)

ẋ(t) = A(θ)x(t) + Bu(t) + d(t)

with

A(θ) =
d∑

i=1
θi Φi

Having observed a history of ẋ(t), x(t), we obtain a linear
regression problem:

min
θ
‖ẋ(t)− A(θ)x(t)− Bu(t)‖2

2
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Confidence Ellipsoid
Proposition (Confidence ellipsoid (Abbasi-yadkori, Pál, and
Szepesvári, 2011))
Under some assumptions on the disturbance d(t), it holds with
probability 1− δ that:

‖θ − θNp,λ‖GNp,λ ≤ βt(δ)

where θNp,λ = G−1
Np,λΦT

[Np]Y[Np];

GNp,λ = ΦT
[Np]Φ[Np] + λId .

𝜃𝑁,𝜆

𝐶𝛿

𝜃
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The prediction goal

Possible trajectories

ẋ(t) = A(θ)x(t) + Bu(t) + d(t)

There are two sources of uncertainty:
• Parametric uncertainty A(θ) ∈ Cδ
• External perturbations d(t)

𝑥 0

𝑥 𝑡, 𝜃 𝑡 , 𝑑(𝑡)
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The prediction goal

Interval Prediction
Can we design an interval predictor [x(t), x(t)] that verifies:

• inclusion property: ∀t, x(t) ≤ x(t) ≤ x(t);
• stable dynamics?

We want the predictor to be as tight as possible. How to proceed?

𝑥 0

𝑥 𝑡 , 𝑥 𝑡

𝑥 𝑡, 𝜃 𝑡 , 𝑑(𝑡)
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A first idea

Assume that x(t) ≤ x(t) ≤ x(t), for some t ≥ 0.

ë To propagate the interval to x(t + dt), we need to
bound A(θ)x(t).

ë Why not use interval arithmetics?

Lemma (Image of an interval (Efimov et al., 2012))
If A a known matrix, then

A+x − A−x ≤ Ax ≤ A+x − A−x .

where A+ = max(A, 0) and A− = A− A+.

X Since A(θ) belongs to a known Cδ,
we can easily compute such bounds A ≤ A(θ) ≤ A
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A candidate predictor

Following this result, define the predictor:

ẋ(t) = A+x+(t)− A+x−(t)− A−x+(t)

+A−x−(t) + B+d(t)− B−d(t), (1)
ẋ(t) = A+x+(t)− A+x−(t)− A−x+(t)

+A−x−(t) + B+d(t)− B−d(t),

x(0) = x0, x(0) = x0,

Proposition (Inclusion property)
X The predictor (1) satisfies x(t) ≤ x(t) ≤ x(t)(t)

? But is it stable?
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Motivating example

Consider the scalar system, for all t ≥ 0:

ẋ(t) = −θ(t)x(t) + d(t), where


x(0) ∈ [x0, x0] = [1.0, 1.1],

θ(t) ∈ Θ = [θ, θ] = [1, 2],

d(t) ∈ [d , d ] = [−0.1, 0.1],

0 1 2 3 4 5
t

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x(t)

X The system is always stable

7 The predictor (1) is unstable
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Additional assumption

Assumption (Polytopic Structure)

There exist A0 Metzler and ∆A0, · · · ,∆AN such that:

A(θ) = A0︸︷︷︸
Nominal
dynamics

+
N∑

i=1
λi (θ)∆Ai ,

N∑
i=1

λi (θ)︸ ︷︷ ︸
≥0

= 1; ∀θ ∈ Θ

𝐴0

Δ𝐴1

Δ𝐴2

Δ𝐴3Δ𝐴4

Δ𝐴5

𝐴(𝜃)
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Our proposed predictor
Denote

∆A+ =
N∑

i=1
∆A+

i , ∆A− =
N∑

i=1
∆A−i ,

We define the predictor

ẋ(t) = A0x(t)−∆A+x−(t)−∆A−x+(t)

+B+d(t)− B−d(t),

ẋ(t) = A0x(t) + ∆A+x+(t) + ∆A−x−(t) (2)
+B+d(t)− B−d(t),

x(0) = x0, x(0) = x0

Theorem (Inclusion property)

The predictor (2) ensures x(t) ≤ x(t) ≤ x(t).
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Stability

Theorem (Stability)
If there exist diagonal matrices P, Q, Q+, Q−, Z+, Z−, Ψ+, Ψ−,
Ψ, Γ ∈ R2n×2n such that the following LMIs are satisfied:

P + min{Z+,Z−} > 0, Υ � 0, Γ > 0,
Q + min{Q+,Q−}+ 2 min{Ψ+,Ψ−} > 0,

where Υ = Υ(A0,∆A−,∆A+,Ψ−,Ψ+,Ψ) ,
then the predictor (2) is input-to-state stable with respect to the
inputs d, d.
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Back to our motivating example

Recall the scalar system:

ẋ(t) = −θ(t)x(t) + d(t), where


x(0) ∈ [x0, x0] = [1.0, 1.1],

θ(t) ∈ Θ = [θ, θ] = [1, 2],

d(t) ∈ [d , d ] = [−0.1, 0.1],
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x(t), x(t)

X The system is always stable X The predictor (2) is stable
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Prediction Results

The naive predictor (1) quickly diverges

The proposed predictor (2) remains stable
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Prediction Results

Prediction during a lane change maneuver

Prediction with uncertainty in the followed lane Li
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Robust Control with Continuous Ambiguity

Approximate the robust objective by a tractable surrogate.

Definition (Robust objective v r )

v r (π)
def
= min

A(θ)∈Cδ

H∑
t=0

γtR(xt , π(xt)) (3)

Definition (Surrogate objective v̂ r )

v̂ r (π)
def
=

H∑
t=0

γt min
[x∈x(t),x(t)]

R(x , π(x)) (4)
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Guarantees

The approximate performance of a policy is guaranteed on the true
environment.

Proposition (Lower bound)

The surrogate objective v̂ r is a lower bound of the true
objective v r :

∀π, v̂ r (π) ≤ v r (π) (5)
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Experiments

Ambiguity Agent Worst-case Mean ± std

None Oracle 9.83 10.84± 0.16

Continuous Nominal 1.99 9.95± 2.38
Robust 7.88 10.73± 0.61
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https://youtu.be/8khqd3BJo0A?t=63


But what if...

Our linear structure assumption is wrong?
Model Adequacy: you can detect it with statistical tests

Solution: Multi-Model Prediction
Use many linear models with different features. For instance:
• Lane-dependent features
• Neural network features
• Random features

Maintain a set of admissible experts
Perform robust aggregation
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Multi-Model Uncertainty

Assumption (Discrete Ambiguity Set)
T ∈ {T1, · · · ,Tm}

Optimistic evaluation of 

paths at the leaves for all 

dynamics

Worst-case 

aggregation 

over the M 

dynamics

min
m

Optimal planning of action 

sequences

max
a
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A robust extension of action-values

Definition (Robust sequence value upper-bound)
Given node i ∈ T , define the robust B-value:

Br
i (n)

def
=

 min
m∈[1,M]

∑d−1
t=0 γ

trt + γd

1−γ if i ∈ Ln ;

max
a∈A

br
ia(n) if i ∈ Tn \ Ln

Theorem (Regret bound)

The corresponding planning algorithm enjoys a simple regret of:

If κ > 1, Rn = O

n
− log 1/γ

logκ

 (6)
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Experiments

Ambiguity Agent Worst-case Mean ± std

None Oracle 9.83 10.84± 0.16

Continuous Nominal 1.99 9.95± 2.38
Robust 7.88 10.73± 0.61

Discrete Nominal 2.09 8.85± 3.53
Robust 8.99 10.78± 0.34
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Conclusion

Decision-making among interacting drivers with behavioural uncertainty

Model-free

1. Self-attention model for permutation invariance and variable size

2. Budgeted reinforcement learning to constrain the expected risk

Model-based

3. Efficient tree-based planning with tight statistical bounds

4. Tackle the issue of model bias
ë Build a confidence region around the true model
ë Design a stable interval predictor
ë Perform robust control with respect to this uncertainty
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Thank You!
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